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“The Devil is in the Details.”

1 Basel II Overview

This short note discusses various issues related to the new Basel II requirements in the
light of current research findings. We first summarize some of the regulations that we
will refer to in the course of this comment, and then proceed to present evidence from
extant research that suggests more analysis is required of some of the implementation
details of Basel II. This comment is agnostic about whether Basel II is likely to result
in over or under-capitalization of major financial institutions. Rather, the attempt is
to focus on areas that need further clarification and analysis, with a view to improve
the accuracy of the amount of capital maintained.

Initially, in this section, we present briefly the benefits of the new IRB approach,
structure of the capital adequacy measures and various acronyms and notation that
will be used throughout this comment. The goal here is to comment on a few technical

∗These comments are rough and ready discussion of various areas of Basel II rules and the U.S.
notice of proposed rule-making (NPR). These comments serve the purpose of linking Basel II issues
to other published work, of the author and others. Reproduced figures from other work are cited
as such. The contents also contain analyses that are original and distinct from other work as well.
These comments are for conference discussion only and not for publication. As always, comments
on these comments are welcome.
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aspects of the guidelines, as well as the NPR (notice of proposed rule making). We will
discuss whether the new IRB approach improves on the previous standard approach in
Basel I, and also take a look at some of technical issues surrounding an implementation
of the new approach.

The change from the old system under Basel I to a new system under Basel II
is well-summarized by the comments of Fed Chairman Ben Bernanke at the Federal
Reserve Bank of Chicago’s 42nd Annual Conference on Bank Structure and Compe-
tition, Chicago, Illinois on May 18, 2006. To quote -

“... the relatively crude method of assigning risk weights to assets, as well as an
emphasis on balance-sheet risks as opposed to other risks facing financial firms, limits
the overall responsiveness of capital requirements to risk under Basel I, which renders
that system increasingly inadequate for supervising the largest and most complex
banking organizations. For these organizations, we need to move beyond Basel I to a
more risk-sensitive and more comprehensive framework for assessing capital adequacy.
Basel II represents the concerted efforts of the supervisory community, in consultation
with banks and other stakeholders, to develop such a framework.”

There are many issues surrounding the impending implementation of the Basel II
IRB (internal ratings based) approach. Proponents for this highlight many advantages
such as (a) a reduction in the amount of capital being held, (b) more dynamic and
realistic capital adequacy computation, (c) risk-based pricing of products, (d) a means
to instill best practices, (e) the introduction of much needed analytical methods, (f)
reduction in expected future charge-offs, (g) reduction in operating expenses, (h)
reduction in operating losses, (i) better capital allocation amongst business units
within a financial institution, (j) improved corporate governance, and (k) overall
lower systemic risk in the financial system.

On the other hand, opponents of the new accord suggest many disadvantages
such as (a) a high cost of implementation, (b) competitive disadvantages between
banks that are not required to comply and those that are required to, (c) competitive
imbalances across countries as different national supervisors impose varied levels of
compliance, (d) strong opposition to operational risk charges as being a deadweight
cost for imposing governance that is already legally mandated, (e) inability to obtain
consistent implementation across all institutions, resulting in more noise than accurate
determination of risk, (f) the propensity to increase systemic risk if the rules impose
distortionary portfolio changes in one same direction across all financial institutions.

To quickly summarize, Basel II envisages three pillars: (1) capital adequacy, (2)
regulatory review, and (3) market discipline. In this comment, we will focus mainly
on capital adequacy and more specifically, on the credit risk component of capital
requirements.
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The previous approach to capital adequacy relied on taking the size of the portfolio
and ascribing to it a risk-factor, based on which a capital requirement was imposed
from a table. Clearly, this suffers from a basic fallacy that ignores portfolio specific
risk, that portfolios tend to be quite different in their individual characteristics, even
when they are of the same asset class, leverage and maturity issues. By suggesting
that we move on to a Value-at-Risk (VaR) like system, where the loss distribution is
explicitly modeled is clearly going to determine capital adequacy better, provided that
the calculations involved and the modeling assumptions are practical and reasonably
accurate. However, moving to the IRB approach allows banks greater flexibility in
making a wide range of assumptions to “cook” the numbers to achieve internal target
capital levels. Yet, one may be optimistic that this is unlikely to occur (a) with
more oversight and, (b) the fact that the IRB approach recognizes that banks have
already been using risk-based capital for almost two decades now, and (c) that this
new approach is much more consistent with internal risk management. By all counts,
this will reduce the costs of internal and regulatory risk management in the long run,
though in the short run, the need to produce both Basel I and II reports is no doubt
an onerous imposition.

To briefly summarize, Basel envisions two types of losses: (a) expected loss (EL),
and (b) unexpected loss (UL). If the horizon for the analysis is denoted T , and the
current value of a portfolio today (at time t) is P (t), then expected loss (EL) is:

EL(T − t) = E[P (T )− P (t)|P (T )− P (t) < 0]

The new accord envisages the horizon (T − t) to be one year (the old accord looked
more at horizons of 10 trading days, i.e. 2 weeks). For possible horizons greater than
a year, a maturity adjustment is envisaged through a factor, denoted M .

VaR at a level of α (say 1%), is defined as the tail cut off [Pα(T )−P (t)] for which
losses in excess of this value will occur with α probability. We write this loss value
as VaR(α, T − t). Unexpected losses are then defined as:

UL(T − t) = VaR(α, T − t)− EL(T − t)

Losses in excess of VaR(α, T − t) are denoted as extreme losses and may also be
reserved for. However, the guidelines appear to only look at EL and UL.

Inextricably tied up with the concepts of expected and unexpected loss are the
notions of regulatory capital and economic capital. Regulatory capital (Tier 1 and
Tier 2) is meant to buttress expected losses, and economic capital is for unexpected
losses. One would also expect that economic capital plays a bigger role in maintaining
the credit rating of a financial institution. Further, regulatory capital is applied to
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losses that are expected to occur but are of smaller consequence. Economic capital
is applied towards low frequency losses, but that have significant magnitude. Again,
for obvious reasons, EL is not sensitive to the shape of the loss distribution as much,
whereas UL clearly is. UL is also susceptible to all the ills that risk measures like VaR
suffer from [such as failure to be a “coherent” risk measure, per Artzner, Delbaen,
Eber and Heath (1999)].

This may be a good point at which to recap that whereas VaR has widespread
use, it has some well-recognized flaws: (a) It is not a “coherent” risk measure, in
that it fails the “sub-additivity” criterion, which simply put, says that a risk measure
should always be lower when a portfolio is diversified. In the case of VaR, this is
not guaranteed; indeed, taking a weighted average of two portfolios may result in
an increase in the risk measure. Intuitively, this comes from the fact that VaR is a
percentile measure, and not a moment of the loss distribution. (b) VaR is very hard
to measure because it depends wholly on the tail of the loss distribution. At tail cut
offs of 99.99%, it is hard to be confident of its value. This is popularly known as
the “Star-Trek” problem, i.e. how do we estimate something where we have never
even gone before. There is really no data to validate the efficacy of such cut-offs.
(c) VaR is known to depend on the number of samples generated in Monte Carlo
simulation (see the study cited by Chorafas (2004), page xxii), in that it increases as
we raise the number of samples (my attempts at replicating this were not successful,
and in fact an examination of mean loss in the tail resulted in reducing mean loss as
sample size increased). Intuitively, greater sampling increases the number of outlier
observations seen, and hence stretches out the tail. It almost necessitates that risk
managers specify the sample size to make VaR meaningful. Conversely, if you want
to reduce UL, simply simulate less. The NPR might comment on this.

To get a sense of the magnitudes of risk in the financial sector, it is interesting
to examine the data on VaR reported by Jeffery and Chen (2006). They show that
VaR in the world’s leading financial institutions for 2005 was $51.9 million (one-day
VaR, at a 99% level). We present the table from their paper in Figure 1 showing the
breakdown of VaR by major bank. Of this, the biggest component is interest rate
VaR, then equity and commodity VaR respectively.

When speaking specifically about credit losses, the accord envisages four risk com-
ponents, i.e., (a) probability of default (PD), (b) loss given default (LGD), (c) expo-
sure at default (EAD), and (d) a maturity adjustment (M). For credit losses,

EL = PD× LGD× EAD× f(M)

Whereas the document presents the formula as above (more or less), what is hidden
is that all these four risk components above may be stochastic and drawn from dis-
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Figure 1: Reproduction of table A from Jeffery and Chen (2006), Risk.
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tributions as well (with correlation amongst them). Hence, the formula above really
suggests that the expected values of these risk components be used to determine EL
(with the concomitant result of running afoul of Jensen’s inequality, though it is un-
clear in which direction.). In order to ascertain UL, a distribution of losses needs to
be generated under many scenarios accounting for the fact that these inputs vary, and
that the occurrence of default is also subject to the specific realization of the value
of PD. The actual LGD also may be variable. The devil lies very much in the details
here. As we will soon see, credit loss distributions are far more tail dependent than
that for market risk, making correlation assumptions difficult to stipulate, validate
and implement.

The Basel II framework suggests two levels of IRB implementation: (i) foundation,
or F-IRB and (ii) advanced, or A-IRB. In the former, banks use their own PD, but
take LGD and EAD as provided by regulators. In the latter, banks use their internal
estimates of all input parameters.

2 Granularity and Aggregation

Fixing asset value correlations between business segments based on empirical corre-
lation studies may result in perverse results for the overall capital to be maintained
across a franchise. Correlation assumptions need to depend on the choice of granu-
larity of the analysis, which can make a substantive difference to the computed risk
measure.

In a single risk factor framework, each transaction has systematic and idiosyncratic
risk. At one extreme, we may have each transaction as a separate portfolio or business
unit (perfect granularity). As transactions are grouped into sub-portfolios (units),
diversification reduces the risk within each sub-portfolio. Overall risk for the franchise
should remain unchanged, since sub-portfolios now become more correlated as the
ratio of systematic risk to idiosyncratic risk across sub-portfolios will increase. This
implies that the correlation between asset classes (sub-portfolios) depends on the
extent of granularity chosen. In a situation where the correlations are fixed based
on empirical estimates independent of granularity, aggregate franchise risk is in fact
distorted. A simple numerical experiment here shows that there is an optimal level
of granularity that a franchise may choose to minimize its required capital. Clearly,
this concern has been recognized within the NPR, since it suggests as high a level of
granularity as possible.

To illustrate the critical nature of the granularity and aggregation decision in
determining capital adequacy, we conduct the following experiment. Assume we have
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n = 210 = 1024 assets in our portfolio and each asset has mean value 0 and variance
1, i.e. we may describe them as standard normal variables (this is without loss of
generality). We also assume that the correlation between these variables is the same
for each pair, and is denoted ρ. Hence the covariance matrix of asset values (Σ) is
of dimension n × n with the value 1 on the diagonal and ρ off-diagonal. Assume an
equally weighted portfolio (P ) of these assets, i.e. w is a vector of weights, each of
value 1/n. The mean value of this portfolio is 0 and its variance is σ2 = w′ Σ w. We
will compute the EL, UL, and VaR of P .

EL =
∫ 0

−∞
P

1√
2πσ2

exp(−P 2/2) dP

where the formula above is the expected value of P conditional on it being less than
0, and assuming it is distributed normally.

The 1% VaR of this portfolio is obtained by inverting the cumulative normal
distribution for the left tail area of 0.01. Finally, the UL is determined using EL and
VaR. If we assume that ρ = 0.5, we obtain the following values:

EL = 0.2822, UL = 1.3635, VaR = 1.6458

where of course, the values are taken with positive sign since we are interested in
the loss distribution, even though the integral above results in a negative value. We
might imagine that what we have here are 1024 separate business portfolios and that
we aggregate them all equally weighted into one enterprise portfolio and compute the
risk measures above. This set up assumes a very high level of granularity, i.e. each
asset is a distinct business unit.

Next, suppose we construct each business unit as comprising m = 2 assets, so
that we have n = 512 business units or portfolios. Our basis for computing EL, UL
and VaR now requires the covariance matrix of these 512 portfolios. Note that each
portfolio has mean 0 as before, but the variance is y′ Ω y where y is a vector of length
m of values 1/m. Ω is a matrix of dimension m×m, with 1s on the diagonal and ρ
off-diagonal.

We construct the covariance matrix Σ of the entire franchise (this is of dimension
n×n or 512×512) [the correlation parameter ρ here between portfolios may actually
vary, depending on the actual factor model used. But our goal here is more to
demonstrate the perverseness of risk measurement for varying aggregation levels].
The diagonal elements are y′ Ω y, and the off-diagonal elements are ρ(y′ Ω y). This
is the crux of the problem at hand, the parameter ρ is not adjusted for the change
in granularity. After running the computations as before, we obtain the following
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values:
EL = 0.2445, UL = 1.1814, VaR = 1.4260

The capital required here is lower, as all three risk measures are smaller than before.
This is not surprising as the correlation across business units has been dampened as
they are made up of portfolios. We undertook the same computation for a changing
number of portfolios of the 1024 assets, by dividing the number of business units
progressively by by 2, and multiplying the number of assets within each portfolio by
2. The results for EL, UL, and VaR are shown in Figure 1.

Table 1: Expected loss, unexpected loss and Value-at-Risk for varying levels of granularity
and aggregation. The first column shows the number of business units, and the second
one the number of assets within each unit. Each asset has a standard normal distribution.
“Corr” is the average pairwise correlation between portfolio values.

# portfolios # within portfolio Corr EL UL VaR
1024 1 0.5000 0.2822 1.3635 1.6458
512 2 0.3750 0.2445 1.1814 1.4260
256 4 0.3125 0.2235 1.0796 1.3030
128 8 0.2812 0.2124 1.0261 1.2385
64 16 0.2656 0.2072 1.0011 1.2083
32 32 0.2578 0.2057 0.9938 1.1995
16 64 0.2539 0.2072 1.0011 1.2083
8 128 0.2520 0.2124 1.0261 1.2385
4 256 0.2510 0.2235 1.0796 1.3030
2 512 0.2505 0.2445 1.1814 1.4260
1 1024 0.5000 0.2822 1.3635 1.6458

The results are interesting. As we reduce the level of granularity the risk mea-
sures fall. This is because there are two types of diversification involved here: (a)
diversification within portfolio or business unit, and (b) diversification across units.
When the portfolio is the same as the asset, there is no within unit diversification,
only across units. As we increase the number of assets in each portfolio, we get diver-
sification within unit, and also across unit. Think of the original covariance matrix
being halved in dimension and block diagonalized so as to lose some of the correlation
between individual securities across units. Hence, this leads to Problem #1, i.e. that
the level of granularity affects measures of risk, even though the total risk has not
been changed.
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As granularity is reduced further, again there is a trade-off between diversification
within and across portfolios, until at some point, we begin to lose diversification
across units, as the number of portfolios becomes too small, and the risk measures
begin to rise once again. We can see that there is a material difference between the
risk measures at varied granularity levels. This leads to Problem #2, i.e. when the
regulators (internal or external) provide AVC levels, what granularity level do they
have in mind?

The simple correction required is to increase ρ across business units as the level
of granularity declines. But by how much? In our example, where all assets have the
same distribution, it is easy to compute the correction. But when the assets within
each unit are heterogeneous, there is no simple way to do this. Again, the NPR clearly
envisages this problem in requiring that units be defined for highly homogeneous
assets. In short, granularity of risk measures complicates risk aggregation on account
of correlation assumptions. Imposing infinite granularity makes computation difficult
since the number of assets in the VaR simulation becomes very large. Clubbing assets
into sub-classes helps computationally, but careful corrections need to be applied to
correlation assumptions.

3 Correlation Sensitivity of Credit Portfolios

For credit portfolios, risk measures, based on loss distributions are highly sensitive to
the correlation parameter. Credit portfolios are essentially based on binary outcomes,
and hence the joint distribution is quite different than with portfolios where the
outcomes reside on a wide range of values. Intuitively we will see that a portfolio
of binary outcomes has a distribution that changes very quickly when correlations
change than say, a portfolio where the assets are distributed multivariate normal.

In the previous section, we saw that the risk measures EL, UL and VaR are
sensitive to granularity. The analysis there was simple and assumed distributions
over a continuous range of values. However, when dealing with credit losses, the
value tends to be either zero or a loss value within some smaller range. Intuitively,
each asset follows more or less a Bernoulli distribution, with one outcome being zero.
When we construct portfolios of such assets, the distributions become even more
sensitive to correlation assumptions, implying that the risk measures will also be
much more variable when correlations are changed.

To illustrate, we work in the standard single risk factor framework that is now
very popular in an analyzing correlated default risk. Assume there are n assets in a
portfolio. Each asset is identical with a Bernoulli outcome over values {0, LGD} with

9



probability {1 − PD, PD} respectively. For normalization assume that EAD = 1,
and that LGD = 1. In this example, we assume that only PD is stochastic and that
all other input variables are constant.

In order to inject correlation amongst defaults, we examine the following set up.
Assume that the n assets each have an underlying value process as follows:

xi =
√

ρ z +
√

1− ρ ei, z, ei ∼ N(0, 1), ∀i.

Hence, E(xi) = 0, and V ar(xi) = 1, for all assets, assuming that z is independent of
all ei, and that the eis are independent. As we can see correlation amongst the assets is
generated from the common random variable z. Note that Cov(ei, ej) = ρ for all pairs
(i, j). Since means are zero and variances are 1, the covariance is also the correlation.
This is a standard set up and for more examples of credit loss computations, see
Kupiec (2005).

For asset i, default occurs if N(xi) < PD, where N(.) stands for the cumulative
normal distribution. We will find it easier to build up the loss distribution if we
condition on various values of z. Suppose we fix a value of z. Then the probability
of default, conditional on z is denoted PD|z, and is

PD|z = Prob[N(xi) < PD|z]

= Prob[xi < N−1(PD)|z]

= Prob[
√

ρ z +
√

1− ρ ei < N−1(PD)|z]

= Prob[ei <
N−1(PD)−√

ρ z√
1− ρ

|z]

= N

[
N−1(PD)−√

ρ z√
1− ρ

|z
]

≡ qz

The probability that there are m losses from n firms, conditional on z is denoted
pz(m), given by the binomial formula

pz(m) =

(
n

m

)
qm
z (1− qz)

n−m, m = 0...n.

Noting that z ∼ N(0, 1) we can integrate it out to get the full loss distribution, with
the probability of m losses:

p(m) =
∫ ∞

−∞
pz(m) φ(z) dz, m = 0...n.
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Table 2: Risk measures for varying default correlation. The PD for each firm is 5% and
the number of identical firms is 100. The expected loss should be exactly 5.00 for all
correlation levels, and the tiny discrepancy comes from numerical rounding error. The last
column contains the adjustment term from the formula on page 405 of the draft NPR, i.e.
N
[

N−1(PD)−√ρ N−1(0.999)√
1−ρ

]
. We can see how it varies with correlation.

Corr EL UL CVar Kadj
0.00 5.0000 5.2046 10.2046 0.0500
0.10 4.9991 13.1910 18.1902 0.2408
0.20 4.9984 20.7485 25.7469 0.3844
0.21 4.9984 21.5080 26.5064 0.3985
0.22 4.9983 22.2602 27.2585 0.4124
0.23 4.9982 23.0061 28.0044 0.4264
0.24 4.9982 23.7793 28.7775 0.4403
0.25 4.9981 24.5474 29.5455 0.4542
0.26 4.9981 25.3110 30.3090 0.4680
0.27 4.9980 26.0713 31.0693 0.4817
0.28 4.9980 26.8482 31.8461 0.4955
0.29 4.9979 27.6300 32.6279 0.5091
0.30 4.9979 28.4099 33.4078 0.5227
0.40 4.9975 36.4720 41.4695 0.6553
0.50 4.9973 45.1927 50.1900 0.7776
0.60 4.9972 54.8697 59.8670 0.8818

where φ(t) is the normal pdf. This is easily computed using a fast quadrature routine
or discrete integral. Once we have the loss distribution we can compute EL, UL and
CVaR (credit VaR). Note that this approach is fairly standard and correctly produces
credit loss distributions with the desired correlation. The risk measures are shown
in Table 2. It is evident that the UL risk measure (and hence economic capital) is
very sensitive to correlation assumptions. To get a visual feel for how quickly the loss
distributions change, see Figure 2. Also note the last column in Table 2. It contains
the term that varies as correlation changes in the capital formula from page 405 of
the draft NPR. It complements this analysis in that the correlation adjustment tracks
the vastly changing risk measures quite well.
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Credit Loss Distributions
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Figure 2: Credit Loss distributions under varied default correlation levels. We only present
the loss levels out to 50 on the x-axis, even though the maximum number of defaults is 100,
as the probabilities become very low thereafter. Note the distribution is mostly symmetric
under the zero correlation assumption, and then becomes sharply skewed rapidly as we
increase the level of correlation.
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4 Asset Value Correlations (AVC)

The agencies involved in the formulation of the NPR have mandated two principles
that need some discussion. First, the concept of portfolio invariance, and second, the
use of correlation factors. The first allows each individual position’s credit exposure to
be calculated without accounting for other risks that might be taken in the remainder
of the franchise. The second adjusts capital for the additional risk that arises from
correlations. The first question that arises is whether the correlation adjustment
that is made accounts properly for the sensitivity of the risk measures to correlation
changes. As we have seen in Table 2, this certainly appears to be so.

An important second question is whether the assumption that low-PD portfolios
are more correlated than high-PD portfolios is a valid one [this question is raised for
discussion on page 67 of the draft NPR]. In this setting, the analysis appears to be
incomplete to some extent. It is useful here to take the viewpoint of doubly-stochastic
reduced-form models. In these models, default depends on two stochastic processes,
(i) one process driving default probabilities, and (ii) conditional on a PD, another
random variable driving the event of default. Correlated default occurs because of
either or both of these stochastic processes. Defaults are correlated because firms’
PDs are correlated. Defaults may also be correlated even when PDs are independent,
if contagion effects exist, and the default of one firm triggers the default of others.

As it turns out, low-PD firms tend to display higher PD correlations than high-
PD firms. This is intuitive. Low-PD firms also tend to be larger, and have greater
systematic risk, and thus tend to be correlated to each other, whereas firms that are
high-PD tend to also have a high degree of idiosyncratic movements in value, and thus
high-PD firms will display lower correlation in PDs. This is confirmed in a study by
Das, Freed, Geng and Kapadia (2001). Figure 3 contains a reproduction of Table 4
from this paper. It shows that high quality firms have higher PD correlation than
low quality firms, across four economic regimes. This confirms and supports the ideas
embedded in the NPR.

However, our analysis here is not complete. We need to consider whether defaults
might be correlated differently for the second part of the doubly stochastic reduced
form model. In other words, are contagion effects more prevalent amongst high-PD
firms as opposed to low-PD ones? The presence of contagion (or frailty) effects has
been empirically confirmed in Das, Duffie, Kapadia and Saita (2004). Whether these
are more prevalent amongst high or low quality firms is an open question that required
further empirical analysis. From a historical perspective, the late 1980s were a time
when contagion might arguably have been residing in the realm of high-PD firms.
But in the early 2000s, the major contagion effects were evidenced amongst fairly
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Table 4: Correlations of Defaults Intensities.
The table reports the median correlation ρij computed using default intensities from Moody’s PDs.
The correlation is defined as the correlation between the shocks in each of the regressions,

λi(t)− λi(t− 1) = εi(t), MODEL 1

λi(t) = αi + βiλi(t− 1) + ε̃i(t), MODEL 2

where λi(t) is the default intensity of firm i in month t. Correlations are estimated pairwise for each pair
of firms in the sample, and the median is reported. Panel A reports the results by credit class. The first
line reports the Pearson correlation coefficient. The second line reports the rank correlation coefficient.
Panel B reports results by SIC code; to conserve space, only the Pearson correlation coefficient is
reported.

Panel A

Group Period I Period II Period III Period IV

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
High Grade 0.36 0.37 0.10 0.10 0.02 0.01 0.37 0.38

0.33 0.30 0.12 0.11 0.04 0.04 0.34 0.31

Medium Grade 0.22 0.23 0.10 0.10 0.03 0.02 0.24 0.25
0.25 0.23 0.14 0.12 0.06 0.06 0.27 0.24

Low Grade 0.16 0.16 0.06 0.07 0.02 0.02 0.17 0.17
0.19 0.17 0.13 0.13 0.05 0.05 0.20 0.18

Not Rated 0.16 0.16 0.05 0.06 0.02 0.02 0.16 0.17
0.15 0.13 0.07 0.07 0.02 0.02 0.16 0.13

Panel B

Group Period I Period II Period III Period IV

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Sector 1 0.54 0.19 0.14 0.06 -0.04 0.00 0.40 0.00
Sector 2 0.16 0.09 0.04 0.00 0.00 0.01 0.50 0.10
Sector 3 0.29 0.16 0.25 0.05 0.02 0.02 0.23 0.07
Sector 4 0.29 0.17 0.12 0.05 0.00 0.00 0.21 0.06
Sector 5 0.42 0.13 0.17 0.06 0.01 0.00 0.15 0.05
Sector 6 0.32 0.16 0.14 0.06 0.00 0.00 0.20 0.05
Sector 7 0.40 0.19 0.14 0.07 0.02 0.01 0.13 0.05
Sector 9 0.17 0.11 0.06 0.04 0.00 0.00 0.13 0.04
Sector 10 0.15 0.09 0.04 0.01 0.08 0.00 0.10 0.03

Figure 3: Reproduction of Table 4 from Das, Freed, Geng and Kapadia (2001) showing
that low-PD (high quality) firms have higher correlations than high-PD (low quality) firms.
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large, well established firms. Additional analysis is required here.
In the context of contagion, we see that in periods when PDs were high, as in

Figure 3, (periods I and IV), default correlations tend to be 2 to 4 times as high as
in periods with low correlation. Thus, in downturn scenarios, UL might be based
on a correlation level of 0.40 versus normal times, with correlation of 0.10. From
Table 2 we can see that UL will change by a factor of 2.7, which would also be the
change in economic capital required. Hence, it seems appropriate to allow capital to
be dynamically adjusted when in periods of downturn (as best we may know this),
rather than build this into capital requirements on a continuous basis as envisaged in
Table 2, page 405 of the NPR.

This naturally raises a third question of how to detect a down cycle, which is
characterized in the industry debate as the “detection of pro-cyclicality”. We submit
here that this is not as infeasible as it might have been a few years ago. We now have
evidence that models for aggregate default intensity correlate strongly with actual
default levels. Give this, we might be able to use aggregate PD measures to assess
when a regime shift has occurred. Figure 4 is a reproduction of Figure 2 from Das,
Duffie, Kapadia and Saita (2004). What is clearly noticeable in the figure is how well
the line for aggregate default intensity tracks actual defaults. Hence, we may be able
to use various models such as the one by Duffie, Saita, and Wang (2005) for detecting
pro-cyclicality.

A fourth question that arises is whether the specific assumption of low (high)-PD
corresponding to high (low)-credit correlation will distort the amount of economic
capital required. Noting from Table 2 that UL (economic capital requirement) is
very sensitive to correlation might well result in a high-PD portfolio requiring less
economic capital than a low-PD portfolio. Given that a high-PD portfolio attracts a
greater regulatory capital requirement, this may not be an issue, until we realize that
the total capital required may even be higher for a low-PD portfolio versus a high-PD
one. Again, this highlights that correlation assumptions may be tricky, resulting in
non-intuitive capital requirements.

5 Loss Given Default

The determination of LGD required for the EL computation is a difficult issue. We
are in need of models that allow us to determine a forecast of recovery conditional
on default. One such model that makes use of easily available information at a given
point of time has been developed by Das and Hanouna (2006). The model is flexible
and uses the information in CDS spreads to determine both default probability and
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Figure 2. Intensities and Defaults. Aggregate (across firms) of monthly default inten-
sities and number of defaults by month, from 1979-2004. The vertical bars represent the
number of defaults, and the line depicts the intensities.

Figure 4: Reproduction of Figure 2 from Das, Duffie, Kapadia and Saita (2004). The figure
shows the number of defaults as well as the aggregate of default intensity (probability) over
time. The two series track each other very well, and hence, the aggregate intensity, based
on the model of Duffie, Saita, and Wang (2005) may be used to detect pro-cyclicality.
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recovery. The model may also be applied on average to sector spreads if need be to
obtain a coarser estimate of recovery rates that may be more amenable to regulatory
use.

The brief outline of the Das and Hanouna (2006) algorithm is as follows (full
details are available in their paper). In a reduced-form default model, we may use
CDS spreads to extract the term structure of forward default probabilities (λ), making
some assumption about recovery rates (φ, or LGD = 1−φ). If we do not know φ, we
may identify it by specifying a functional relationship between φ and probability of
default, and Das and Hanouna develop a fast algorithm that exploits the relationship
between φ and λ, and recovers both in a fully identified model.

Firms that choose to adopt the A-IRB approach may use this framework to de-
termine the recovery rates for individual names in their portfolios.

6 Contagious Interaction of PD and LGD

When the Das and Hanouna (2006) algorithm is applied to 3,130 firms over the period
2000-2002, and λ and φ is aggregated for all firms (equally-weighted), we get a strong
inverse relationship between default probabilities and recoveries, complementing the
findings of Altman, Brady, Resti and Sironi (2004). Figure 5 reproduces a plot (Fig
5) from the Das-Hanouna paper.

They also examined the correlation of default probability and recovery in the
cross-section of firms within each month. A strong negative correlation is found and
their Figure 6 is reproduced here in Figure 6.

From 2000 to 2002, as default rate rose, recovery rates fell, and the correlation
between the two became more negative. The relevant implications of these results
for Basel II are that (a) the correlation between PD and LGD is important in the
application of the EL = PD×LGD×EAD×M equation. (b) We know from Das,
Freed, Geng and Kapadia (2001) that when PDs rise, their correlations increase, and
from Das, Duffie, Kapadia and Saita (2004) that there is additional correlation of the
contagion form even after conditioning on PDs. Now, from Das and Hanouna (2006),
we see that recovery rates become increasingly negatively correlated with PDs as PDs
rise, resulting in correlated LGDs (another form of contagion not recognized earlier).
Hence, not only do defaults cluster, but when they do, LGDs cluster as well. This
has important implications for capital adequacy, and if anything should bias capital
requirements higher. Further, the systemic risk implications are also of concern.

Therefore, we now have three different sources of correlation to deal with in the
framework of reduced form models. First, there is the correlation between default
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Time-Series of Cross-Sectionnal Average of the Implied Risk-Neutral Probability of Default,

 EDF, and the Implied Recovery Rate using 5-Year CDS spreads (January 2000-July 2002)
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Figure 5: Cross-sectional average of the implied recovery rate (φ) and the corresponding risk-
neutral probability (λ) for all firms in the sample for the period from January 2000 to July 2002. For
each month and each firm, we computed the implied recovery rate using the Merton-based algorithm
for each half-year forward period upto 5 years. The plot above uses the implied forward recovery
rates for the last period, which proxies for the asymptotic recovery rate in the model. Recovery rates
are implied using information from both, the equity and credit default swap markets. Full details of
the algorithm used are presented in section 5.2. The recovery rate time series slopes downwards, and
the default probability series slopes upwards, clearly evidencing the negative correlation between
the two.

(2001), and that contagion effects are prevalent, as evidenced in Das, Duffie, Kapadia and

Saita (2004).

The fact that the correlation between recovery and default becomes more negative as
default increases, implies that contagion effects also spread to losses given default. That is,
when default risk levels increase in the economy, the losses given default are likely to be
higher, implying a souring of the resale market for the firm’s assets. Thus, the contagion
effects of increasing default risk on credit portfolios may be even more adverse than previously
known.

6.3 Principal components analysis of recovery rates

After extracting the recovery rates for each firm, we then sorted firms by their time-series
averaged EDF into ten decile portfolios. For each decile we obtain the portfolio recovery
rate, assuming equal weights for each firm. The time series of all ten portfolios is subjected
to principal components analysis. Figure 7 shows the percentage variation explained by

each component. There is one main component, which accounts for 78.9% of the common

variation across the firms. The second component is much smaller, explaining only 8.2% of
common variation. Thus, for parsimony, a single factor model might suffice to explain the

Figure 5: Default and recovery rates over time, from Das and Hanouna (2006) - “Implied
Recovery”
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Time-Series of Cross-Sectionnal Correlation between the Implied Risk-Neutral Probability of Default 
and the Implied Recovery Rate using 5-Year CDS spreads (January 2000-July 2002)
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Figure 6: Cross-sectional correlation of the implied recovery rate (φ) and the corresponding risk-
neutral probability (λ) for all firms in the sample for the period from January 2000 to July 2002. For
each month and each firm, we computed the implied recovery rate and default probability using the
Merton-based iterative algorithm for each half-year forward period upto 5 years. The plot above uses
the implied forward recovery rates for the last period, which proxies for the asymptotic recovery rate
in the model. Full details of the algorithm used are presented in section 5.2. Correlations between
recovery and default rates are computed in the cross-section for each month. The correlations
become more negative (increases in absolute sign) as default risk in the economy increases.

variation across time in implied risk-neutral forward recovery rates.

After extracting the principal components, we generated the time series for the first two

components, and then plotted them in Figure 8. The main component, as expected, will track

the time series of the recovery rate closely, given that it explains a substantial proportion

of the common variation in recovery rates. In the next subsection, we will analyze various

possible variables with a view to identifying these components.

Figure 6: Correlation of default and recovery rates over time, from Das and Hanouna
(2006) - “Implied Recovery”
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probabilities of various counterparties. Second, the correlation between PD and LGD
as just shown to be negative, and therefore, resulting in greater capital requirements.
Third, is the contagion effect, where the incidence of defaults triggers more defaults.

And finally, in addition to these sources of correlation within the realm of credit
risk, there is the interaction of market risk and credit risk as well. The sign of this
correlation tends to be adverse as well. When market risk increases, the three credit
correlations are also higher.

7 Non-Gaussian Distributions

Much of the regulatory framework for Basel II implementation is based on the single
risk factor Gaussian framework. By using different joint distributions, we may assess
the impact of incorrectly adopting the Gaussian model. In Das and Geng (2004)
different copulas were applied to the PDs from Moodys over a fourteen year period
(1987-2000). The Gaussian copula with normal marginal distributions was found to
be inferior to the Clayton copula model with double exponential marginals. Figure 7
shows the cumulative loss distributions for four copulas assessed in their paper. Also,
the tail of the Clayton copula loss distribution is seen to be much fatter than that of
the student T. Hence, if anything the Gaussian model will understate the amount of
capital required to be maintained.

8 Does accounting for regimes increase or decrease

regulatory capital?

As we have seen, credit risk can vary substantially, both in the level of risk and
in credit correlations across economic regimes. Correct maintenance of capital in a
regimes-based model comes with complications, as we will now see.

With a time horizon of VaR for a year, a confusing issue arises, in that capital
requirements account for more risk than is necessary. Consider the following thought
experiment - say we are currently in a low risk regime in the economy. Also assume
that we can, within a reasonable time (say 1 month) make substantive changes to the
portfolio to mitigate risk. Then, accounting for a possible regime shift that might
occur in one year, where a bad regime is feasible, will result in keeping more capital
than is necessary because the probability of switching to the bad regime before the
portfolio can be immunized is over-stated. On the other hand, if we are in a risky
regime, but there is a likely switch into a low risk one, will result in keeping less
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Figure 5 Comparing copula tail loss distributions: this figure presents plots of the tail loss distributions
for four copulas, when the marginal distribution is normal. The x-axis shows the number of losses out of
more than 600 issuers, and the y-axis depicts the percentiles of the loss distribution. The simulation runs
over a horizon of 5 years and accounts for regime shifts as well. The copulas used are: normal, Gumbel,
Clayton, Student’s t .

chance that the number of defaults will be less
than 75, i.e. a 10% probability that the num-
ber of defaults will exceed 75. For the same level
of 75 defaults, the leftmost line (from the nor-
mal copula), there is only a 7% probability of
the number of losses being greater than 75. By
examining all four panels of the figure, we see
that the ranking of copulas by tail-dependence is
unaffected by the choice of marginal distribution,
i.e. the normal copula is the leftmost plot, fol-
lowed by the Student’s t , Clayton, and Gumbel
copulas.

In Figure 6 we plot the tail loss distributions for
two models, the best fitting one and the worst. The
best fit model combines the Clayton copula, and

marginal distributions based on the Kolmogorov
criterion. The worst fit copula combines the Stu-
dent’s t copula with Student’s t marginals. A
comparison of the two models shows that the worst
fitted copula in fact grossly overstates the extent of
tail loss. Therefore, while there is tail-dependence
in the data, careful choice of copula and marginals
is needed to avoid either under- or over-estimation
of tail-dependence.

6 Discussion

This paper develops a criterion-based methodology
to assess alternative specifications of the joint dis-
tribution of default risk across hundreds of issuers
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Figure 6 Comparing copula tail loss distributions: in this figure we plot the tail loss distributions for two
models, the best fitting one and the worst. The best fit model combines the Clayton copula, and marginal
distributions based on the Kolmogorov criterion. The worst fit copula combines the Student’s t copula
with Student’s t marginals. The simulation runs over a horizon of 5 years and accounts for regime shifts
as well.

in the US corporate market. The study is based
on a data set of default probabilities supplied by
Moody’s Risk Management Services. We under-
take an empirical examination of the joint stochastic
process of default risk over the period 1987–2000.
Using copula functions, we separate the estimation
of the marginal distributions from the estimation
of the joint distribution. Using a two-step Monte
Carlo model, we determine the appropriate choice
of multivariate distribution based on a new metric
for the assessment of joint distributions.

We explored 56 different specifications for the joint
distribution of default intensities. Our methodol-
ogy uses two alternative specifications (jumps and
regimes) for the means of default rates in rating

classes. We consider three marginal distributions for
individual issuer hazard rates, combined using four
different copulas. An important extension to this
model structure is the inclusion of rating changes.
In our analysis, we centered firms as lying within
the same rating for the period of the simulation,
based on their most prevalent rating. The two-step
simulation model would need to be enhanced to a
three-step one, with an additional step for changes
in ratings.14

Other than the myriad specifications, there are
many useful features of the analysis for modelers
of portfolio credit risk. First, we developed a sim-
ple metric to measure best fit of the joint default
process. This metric accounts for different aspects
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Figure 7: Plots of loss distributions reproduced from the paper by Das and Geng (2004),
showing the substantial increase is joint loss likelihood from the best-fitting Clayton copula.
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capital than is currently necessary, unless there is infinite access to capital. Therefore,
sometime we keep too much capital and at other times too little. In any case, we
always keep incorrect amounts of capital.

See Gore (2006) for a discussion that relates to this issue in the context of retail
banking risk. What the discussion suggests is that it might be best to use horizons
appropriate for each business segment. Segments with low liquidity and longer times
to restructure will attract more capital, which also correctly accounts for the liquid-
ity risk in the product line. On the other hand, businesses that engage in liquid
transactions, will naturally be more manageable and the liquidity effect will be small,
resulting in keeping lesser amounts of capital. A one-horizon fits all approach clearly
has its problems, and in particular, complicates keeping correct capital in regime
switching environments.

9 Merton’s 1997 Model

Merton (1977) showed that risk-based capital per dollar of liabilities for a financial
or depository institution was the same as a put option on the bank’s assets A with a
strike price of the liabilities L plus interest thereon, i.e. LerT , where T is the maturity
of the liabilities. This liability insurance is equal to risk-based capital C.

C = N(d2)−
A

L
N(d1)

where

d1 =
ln(L/A)− 0.5σ2T

σ
√

T
, d2 = d1 + σ

√
T

Might it be possible to simply compute and report the Merton model capital required
using this simple formula directly at the firm level? Implementation would be under-
taken exactly in the same way as is done with the Merton (1974) model in various
market implementations. We might think of this as a “top-down” approach to capital
requirements. This is easily reported and also provides another point of comparison
with the more detailed “bottom-up” approach. For amplification of this idea, see
Merton and Perold (1993).
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10 Regulatory safeguards

10.1 Floors on capital reductions

The BIS press release of 10th July, 2002, states - “More fundamentally, the Committee
is proposing to alter the structure of the minimum floor capital requirements in the
revised Accord. Under the new approach, there will be a single capital floor for
the first two years following implementation of the new Accord. This floor will be
based on calculations using the rules of the existing Accord. Beginning year-end
2006 and during the first year following implementation, IRB capital requirements
for credit risk together with operational risk capital charges cannot fall below 90%
of the current minimum required, and in the second year, the minimum will be 80%
of this level. Should problems emerge during this period, the Committee will seek to
take appropriate measures to address them, and, in particular, will be prepared to
keep the floor in place beyond 2008 if necessary.”

First, this has implications for the incentives to implement the new IRB based
capital requirements, as there is a floor on the benefit that might be attained from
moving to the IRB standard. Banks that are likely to have only a small reduction
from moving to IRB will find that the benefits from capital requirement reductions
might indeed be overwhelmed by the costs of implementing the new Basel II standard.

A second effect applies to banks that will experience large reductions in risk capital
were they to use the new IRB approach. Such banks will inevitably be disappointed
with the floors being placed on capital. In any case, when banks eventually suspend
computing Basel I approaches, then the basis for minimum capital floors will need to
be revisited.

Third, there are many points of tension between the old and new requirements.
One might easily imagine circumstances where the risk weights lead to banks that
have diversified their portfolios effectively using modern quantitative methods are
disappointed when their lower risk levels are not rewarded by an actual reduction
in capital required when they hit the floor. This might therefore, disincentivize the
introduction of modern risk management methods. The floor requirement also pe-
nalizes banks that take active measures to reduce the risk of their franchises, even as
they move towards the new IRB approach.

Fourth, in any case, it is unclear as to what the guidelines are for the national
supervisor to assess the performance of banks so as to release them from the floor
capital requirement at the end of the initial three-year period.

Fifth, banks will keep regulatory capital for meeting EL and also economic capital
for further risk. But because we are moving to the IRB approach, the amount of
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capital to be maintained becomes much more variable given changes in the underlying
variables that drive risk even when the portfolio composition does not change. Hence,
there is an aspect of the floor requirement that is surely useful, in that it smoothes
out fluctuations in capital since a bank already at the floor would not need to keep a
reserve buffer given that it was already holding excess capital.

It is clear from the regulator’s point of view that the transitional floor requirements
are a way of implementing the Basel II framework in a “controlled” environment.
Hence, one should not be too critical of the idea. Yet, we do need to take with a pinch
of salt the alacrity with which regulators profess they will review their guidelines and
remain flexible on changing the norms if they feel that there is a material reduction
in capital requirements, failing which the banks would be exposed to unnecessary
hardship as a consequence of the transitional floor requirements. Clearly, regulators
would like banks to hold more low-risk assets, which did not occur under Basel I
guidelines. Given this, the floor capital requirement does not point incentives in this
direction.

10.2 Maintenance of minimum leverage requirement

Rules also stipulate a minimum leverage ratio, defined as Tier 1 Capital divided by
the adjusted quarterly average Total Assets, after adjustments. The leverage ratio
required is a minimum of 3-4% (tier 1 capital divided by average total consolidated as-
sets. Average total consolidated assets equals quarterly average assets from a bank’s
most recent Call Report less goodwill and other intangible assets). Banking organi-
zations must maintain a leverage capital ratio of at least five percent to be classified
as well-capitalized.

This is over and above the Tier 1 capital ratio of 4% (tier 1 capital divided by
risk-weighted assets) and a Total Capital ratio of 8% (the sum of tier 1 and tier
2 capital divided by risk-weighted assets). A well-capitalized institution maintains
capital ratios 2% higher than the required guidelines.

The minimum leverage ratio does not account for off balance sheet assets and is
likely to become increasingly redundant. One envisages a gradual phase-out of this
measure.

How does one include leverage from off balance-sheet positions such as in deriva-
tives? For example a long position in a call option may be transferred from off
balance-sheet to on balance-sheet before computing the leverage ratio. This may be
done by recognizing that the option is decomposable into a long position in equity
and a short position in a loan. The equity position may then be added to the de-
nominator of the ratio. Such decompositions are non-trivial across a large portfolio

24



but will eventually enable us to establish correctly what leverage representations are
especially in the case of an institutional environment in which derivatives are playing
an increasing role.

11 A Proposal for Market Discipline

One of the pillars of the new Basel II accord is that of market discipline. A simple
approach that may be added to the NPR is that banks also report their “distance-to-
default” (DTD) as per the model of Merton (1974). All banks would then be required
to maintain a minimum DTD, and if this fell below the acceptable levels, then the
banks would need to recapitalize in order to comply.

Regulatory involvement would require the setting up of this level of DTD. We note
that one single level of DTD can apply to all banks, as the DTD is a volatility and
leverage adjusted measure, which accommodates differences across banks. Because it
is a normalized measure, it is possible to equalize competitive differences across banks
and is therefore a possibly useful approach. It is also based on market information
and allows risk management of the banking system to be tied to the risk preferences
of investors as well.

Regulators may use historical data on defaulted banks to assess the levels of DTD
that are “critical” given the target failure rates the FDIC is willing to accept.

Regulators will also need to adjust the DTD limit for economic regime. Given
that downturn regimes are characterized by increased default correlations, clearly
DTD limits need to be changed so that contagion is not permitted to take root in the
banking system. The ample research that now exists on correlated default may now
be brought to bear in such a study.

One might conjecture here that such a measure is more transparent and also
consistent with the risk management approaches that banks are more comfortable
with.

One caveat here that also applies to the computation of minimum leverage ratios
is that the application of the Merton (1974) model requires the correct amount of
debt on the balance sheet and in order to assess this off balance-sheet items will also
have to be correctly factored into the analysis.
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